Observer-Based Backstepping Control for an Underwater Manipulator
نویسنده
چکیده
This paper investigates the performance of a new robust tracking control on the basis of proportional-derivative observer-based backstepping control applied on a three degrees of freedom underwater spatial manipulator. Hydrodynamic forces and moments such as added mass effects, damping effects, and restoring effects can be large and have a significant effect on the dynamic performance of the underwater manipulator. In this paper, a detailed closed-form dynamic model is derived using the recursive Newton-Euler algorithm, which extended to include the most significant hydrodynamic effects. In the dynamic modeling and simulation, the actuator and sensor dynamics of the system are also incorporated. The effectiveness of the proposed control scheme is demonstrated using numerical simulations along with comparative study between conventional proportional-integral-derivative PID controls. The results are confirmed that the actual states of joint trajectories of the underwater manipulator asymptotically follow the desired trajectories defined by the reference model even though the system is subjected to external disturbances and parameter uncertainties. Also, stability of the proposed model reference control control scheme is analyzed.
منابع مشابه
Design and Implementation of Discrete Time Observer Based Backstepping Controller for a 2DOF Servomechanism
The two degrees of freedom servomechanism has many applications, including in gimbaled seekers. These mechanisms require closed-loop control to perform properly. In this paper, an observer-based multi-input-multi-output hybrid controller is designed for a two-degree-of-freedom servomechanism. Since in the model presented in this paper, disturbances on the mechanism are considered, so an extende...
متن کاملIntegrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics
In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...
متن کاملNonlinear Robust Tracking Control of an Underwater Vehicle-Manipulator System
This paper develops an improved robust multi-surface sliding mode controller for a complicated five degrees of freedom Underwater Vehicle-Manipulator System with floating base. The proposed method combines the robust controller with some corrective terms to decrease the tracking error in transient and steady state. This approach improves the performance of the nonlinear dynamic control scheme a...
متن کاملForce/Vision Based Active Damping Control of Contact Transition in Dynamic Environments
When a manipulator interacts with objects with poorly damped oscillatory modes, undesired oscillations and bouncing may result. In this paper, we present a method for observer-based control of a rigid manipulator interacting with an environment with linear dynamics. The controller injects a desired damping into the environment dynamics, using both visualand force sensing for stable control of t...
متن کاملDesign of a Teleoperation Controller for an Underwater Manipulator
A robust teleoperation controller design method for an underwater manipulator is proposed considering the master and the underwater slave separately. To achieve transparency and stability for a teleoperation of an underwater manipulator in unknown environments with time-varying uncertainties such as added mass, buoyancy, hydraulic drag and friction effect, an adaptive sliding mode control schem...
متن کامل